中文字幕在线一区二区在线,久久久精品免费观看国产,无码日日模日日碰夜夜爽,天堂av在线最新版在线,日韩美精品无码一本二本三本,麻豆精品三级国产国语,精品无码AⅤ片,国产区在线观看视频

      高中數學說課稿

      時間:2021-07-02 12:21:57 高中說課稿 我要投稿

      【推薦】高中數學說課稿4篇

        作為一位不辭辛勞的人民教師,時常會需要準備好說課稿,編寫說課稿是提高業務素質的有效途徑。我們應該怎么寫說課稿呢?以下是小編為大家收集的高中數學說課稿4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

      【推薦】高中數學說課稿4篇

      高中數學說課稿 篇1

        【一】教學背景分析

        1。教材結構分析

        《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。

        2。學情分析

        圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

        根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

        3。教學目標

        (1) 知識目標:①掌握圓的標準方程;

        ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

        ③利用圓的標準方程解決簡單的實際問題。

        (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

        ②加深對數形結合思想的理解和加強對待定系數法的運用;

        ③增強學生用數學的意識。

        (3) 情感目標:①培養學生主動探究知識、合作交流的意識;

        ②在體驗數學美的過程中激發學生的學習興趣。

        根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

        4。 教學重點與難點

        (1)重點:圓的標準方程的求法及其應用。

        (2)難點: ①會根據不同的已知條件求圓的標準方程;

        ②選擇恰當的坐標系解決與圓有關的實際問題。

        為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

        好學教育:

        【二】教法學法分析

        1。教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。

        2。學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。 下面我就對具體的教學過程和設計加以說明:

        【三】教學過程與設計

        整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

        創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

        反饋訓練 形成方法 小結反思 拓展引申

        下面我從縱橫兩方面敘述我的教學程序與設計意圖。

        首先:縱向敘述教學過程

        (一)創設情境——啟迪思維

        問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?

        通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

        通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。

        (二)深入探究——獲得新知

        問題二 1。根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

        2。如果圓心在,半徑為時又如何呢?

        好學教育:

        這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

        得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。

        (三)應用舉例——鞏固提高

        I。直接應用 內化新知

        問題三 1。寫出下列各圓的標準方程:

        (1)圓心在原點,半徑為3;

        (2)經過點,圓心在點。

        2。寫出圓的圓心坐標和半徑。

        我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。

        II。靈活應用 提升能力

        問題四 1。求以點為圓心,并且和直線相切的圓的方程。

        2。求過點,圓心在直線上且與軸相切的圓的方程。

        3。已知圓的方程為,求過圓上一點的切線方程。

        你能歸納出具有一般性的結論嗎?

        已知圓的方程是,經過圓上一點的切線的方程是什么?

        我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。

        III。實際應用 回歸自然

        問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

        好學教育:

        我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。

        (四)反饋訓練——形成方法

        問題六 1。求過原點和點,且圓心在直線上的圓的標準方程。

        2。求圓過點的切線方程。

        3。求圓過點的切線方程。

        接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。

        (五)小結反思——拓展引申

        1。課堂小結

        把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

        圓心在原點時,半徑為r 的圓的標準方程為:。

        ②已知圓的方程是,經過圓上一點的切線的方程是:。

        2。分層作業

        (A)鞏固型作業:教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。

        3。激發新疑

        問題七 1。把圓的標準方程展開后是什么形式?

        2。方程表示什么圖形?

        在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

        以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計

        (一)突出重點 抓住關鍵 突破難點

        好學教育:

        求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。

        第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。

        (二)學生主體 教師主導 探究主線

        本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。

        (三)培養思維 提升能力 激勵創新

        為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。

        以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。

      高中數學說課稿 篇2

        說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。

        下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。

        一、 背景分析

        1、學習任務分析

        平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。

        本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。

        2、學生情況分析

        學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。

        二、 教學目標設計

        《普通高中數學課程標準(實驗)》 對本節課的要求有以下三條:

        (1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

        (2)體會平面向量的數量積與向量投影的關系。

        (3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。

        從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

        綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:

        1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

        2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,

        并能運用性質和運算律進行相關的運算和判斷;

        3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。

        三、課堂結構設計

        本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:

        即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。

        四、 教學媒體設計

        和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:

        1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。

        2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。

        平面向量數量積的物理背景及其含義

        一、 數量積的概念 二、數量積的性質 四、應用與提高

        1、 概念: 例1:

        2、 概念強調 (1)記法 例2:

        (2)“規定” 三、數量積的運算律 例3:

        3、幾何意義:

        4、物理意義:

        五、 教學過程設計

        課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:

        活動一:創設問題情景,激發學習興趣

        正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:

        問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?

        問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

        期望學生回答:物理模型→概念→性質→運算律→應用

        問題3:如圖所示,一物體在力F的作用下產生位移S,

        (1)力F所做的功W= 。

        (2)請同學們分析這個公式的特點:

        W(功)是 量,

        F(力)是 量,

        S(位移)是 量,

        α是 。

        問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。

        問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。

        問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。

        活動二:探究數量積的概念

        1、概念的抽象

        在分析“功”的計算公式的基礎上提出問題4

        問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

        學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。

        2、概念的明晰

        已知兩個非零向量

        與

        ,它們的夾角為

        ,我們把數量 ︱

        ︱·︱

        ︱cos

        叫做

        與

        的數量積(或內積),記作:

        ·

        ,即:

        ·

        = ︱

        ︱·︱

        ︱cos

        在強調記法和“規定”后 ,為了讓學生進一步認識這一概念,提出問題5

        問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

        角

        的范圍0°≤

        <90°

        =90°0°<

        ≤180°

        ·

        的符號

        通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。

        3、探究數量積的幾何意義

        這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。

        如圖,我們把│

        │cos

        (│

        │cos

        )叫做向量

        在

        方向上(

        在

        方向上)的投影,記做:OB1=│

        │cos

        問題6:數量積的幾何意義是什么?

        這樣做不僅讓學生從“形”的角度重新認識數量積的`概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。

        4、研究數量積的物理意義

        數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題 一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。

        問題7:

        (1) 請同學們用一句話來概括功的數學本質:功是力與位移的數量積 。

        (2)嘗試練習:一物體質量是10千克,分別做以下運動:

        ①、在水平面上位移為10米;

        ②、豎直下降10米;

        ③、豎直向上提升10米;

        ④、沿傾角為30度的斜面向上運動10米;

        分別求重力做的功。

        活動三:探究數量積的運算性質

        1、性質的發現

        教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:

        (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

        (2)比較︱

        ·

        ︱與︱

        ︱×︱

        ︱的大小,你有什么結論?

        在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。

        2、明晰數量積的性質

        3、性質的證明

        這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。

        活動四:探究數量積的運算律

        1、運算律的發現

        關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9

        問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?

        通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。

        學生可能會提出以下猜測: ①

        ·

        =

        ·

        ②(

        ·

        )

        =

        (

        ·

        ) ③(

        +

        )·

        =

        ·

        +

        ·

        猜測①的正確性是顯而易見的。

        關于猜測②的正確性,我提示學生思考下面的問題:

        猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

        學生通過討論不難發現,猜測②是不正確的。

        這時教師在肯定猜測③的基礎上明晰數量積的運算律:

        2、明晰數量積的運算律

        3、證明運算律

        學生獨立證明運算律(2)

        我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:

        當λ<0時,向量

        與λ

        ,

        與λ

        的方向 的關系如何?此時,向量λ

        與

        及

        與λ

        的夾角與向量

        與

        的夾角相等嗎?

        師生共同證明運算律(3)

        運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。

        在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。

        活動五:應用與提高

        例1、(師生共同完成)已知︱

        ︱=6,︱

        ︱=4,

        與

        的夾角為60°,求

        (

        +2

        )·(

        -3

        ),并思考此運算過程類似于哪種運算?

        例2、(學生獨立完成)對任意向量

        ,b是否有以下結論:

        (1)(

        +

        )2=

        2+2

        ·

        +

        2

        (2)(

        +

        )·(

        -

        )=

        2—

        2

        例3、(師生共同完成)已知︱

        ︱=3,︱

        ︱=4, 且

        與

        不共線,k為何值時,向量

        +k

        與

        -k

        互相垂直?并思考:通過本題你有什么收獲?

        本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。

        為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:

        1、 下列兩個命題正確嗎?為什么?

        ①、若

        ≠0,則對任一非零向量

        ,有

        ·

        ≠0.

        ②、若

        ≠0,

        ·

        =

        ·

        ,則

        =

        .

        2、已知△ABC中,

        =

        ,

        =

        ,當

        ·

        <0或

        ·

        =0時,試判斷△ABC的形狀。

        安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,

        通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。

        活動六:小結提升與作業布置

        1、本節課我們學習的主要內容是什么?

        2、平面向量數量積的兩個基本應用是什么?

        3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?

        4、類比向量的線性運算,我們還應該怎樣研究數量積?

        通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下

        一節做好鋪墊,繼續激發學生的求知欲。

        布置作業:

        1、課本P121習題2.4A組1、2、3。

        2、拓展與提高:

        已知

        與

        都是非零向量,且

        +3

        與7

        -5

        垂直,

        -4

        與 7

        -2

        垂直求

        與

        的夾角。

        在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。

        六、教學評價設計

        評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:

        1、 通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定

        性的評價。

        2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。

        3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。

        4、 通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。

      高中數學說課稿 篇3

        一、教材地位與作用

        本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理的知識非常重要。

        二、學情分析

        作為高一學生,同學們已經掌握了基本的三角函數,特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。

        教學重點:正弦定理的內容,正弦定理的證明及基本應用。

        教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

        根據我的教學內容與學情分析以及教學重難點,我制定了如下幾點教學目標

        教學目標分析:

        知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

        能力目標:探索正弦定理的證明過程,用歸納法得出結論。

        情感目標:通過推導得出正弦定理,讓學生感受數學公式的整潔對稱美和數學的實際應用價值。

        三、教法學法分析

        教法:采用探究式課堂教學模式,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

        學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數學思維能力,鍥而不舍的求學精神。

        四、教學過程

        (一)創設情境,布疑激趣

        “興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

        (二)探尋特例,提出猜想

        1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

        2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

        3.讓學生總結實驗結果,得出猜想:

        在三角形中,角與所對的邊滿足關系

        這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

        (三)邏輯推理,證明猜想

        1.強調將猜想轉化為定理,需要嚴格的理論證明。

        2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

        3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

        4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明。

        (四)歸納總結,簡單應用

        1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

        2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

        3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

        (五)講解例題,鞏固定理

        1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

        例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

        2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

        例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

        (六)課堂練習,提高鞏固

        1.在△ABC中,已知下列條件,解三角形。

        (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

        2.在△ABC中,已知下列條件,解三角形。

        (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

        學生板演,老師巡視,及時發現問題,并解答。

        (七)小結反思,提高認識

        通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

        1.用向量證明了正弦定

        理,體現了數形結合的數學思想。

        2.它表述了三角形的邊與對角的正弦值的關系。

        3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

        (從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)

        (八)任務后延,自主探究

        如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。

      高中數學說課稿 篇4

        一、說設計理念

        《數學課程標準》指出要讓學生感受生活中處處有數學,用數學知識解決生活中的實際問題。

        基于這一理念,我在教學過程中力求聯系學生生活實際和已有的知識經驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數學課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學氛圍,讓學生經歷知識的探究過程,培養學生感受生活中的數學和用數學知識解決生活問題的能力,體驗數學的應用價值。

        二、教材分析:

        (一)教材的地位和作用

        有關統計圖的認識,小學階段主要認識條形統計圖、折線統計圖和扇形統計圖。考慮到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學內容安排在本單元。本單元是在前面學習了條形統計圖和折線統計圖的特點和作用的基礎上進行教學的。主要通過熟悉的事例使學生體會到扇形統計圖的實用價值。

        (二)教學目標

        1、聯系生活情境了解扇形統計圖的特點和作用

        2、能讀懂扇形統計圖,從中獲取有效的信息。

        3、讓學生在觀察、比較、討論和交流中體會扇形統計圖反映的是整體和部分的關系。

        (三)教學重點:

        1、能讀懂扇形統計圖,理解扇形統計圖的特點和作用,并能從中獲取有效信息。

        2、認識折線統計圖,了解折線統計圖的特點。

        (四)教學難點:

        1、能從扇形統計圖中獲得有用信息,并做出合理推斷。

        2、能根據統計圖和數據進行數據變化趨勢的分析。

        二、學情分析

        本單元的教學是在學生已有統計經驗的基礎上,學習新知的。六年級的學生已經學習了條形統計圖和折線統計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎上,通過新舊知識對比,自然生成新知識點。

        三、設計理念和教法分析

        1、本堂課力爭做到由“關注知識”轉向“關注學生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領導者。”將課堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。

        2、運用探究法。探究學習的內容以問題的形式出現在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構建知識體系。引導學生獲取信息并合作交流。

        四、說學法

        《數學課程標準》指出有效的數學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關注身邊的數學,使學生體會到觀察、概括、想象、遷移等數學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養學生學習的主動性和積極性。

        五、說教學程序

        本課分成創設情境,感知特點——分析數據,理解特征——嘗試制圖,看圖分析——實踐應用,全課總結四環節。

        六、說教學過程

        (一)復習引新

        1、復習舊知

        提問:我們學習過哪些統計方法?其中條形統計圖和折線統計圖各有什么特點?

        2、引入新課

        (二)自主探索,學習新知

        新知識教學分二步教學:第一步整體感知,看懂統計圖,理解特征,這是本節課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯系,放手讓學生獨立思考,互相合作,進一步了解統計圖的特征。

        第二步實踐應用環節。在教學中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯系。根據統計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發現問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數據變化帶來的啟示,并能合理地進行推理與判斷

        三、課堂總結

        四、布置作業。

        五、板書設計:

      【【推薦】高中數學說課稿4篇】相關文章:

      【推薦】高中數學說課稿四篇07-11

      高中數學經典說課稿范文06-24

      高中數學說課稿(15篇)11-03

      高中數學說課稿15篇10-16

      高中數學經典優秀說課稿模板07-14

      高中數學說課稿10篇06-13

      高中數學說課稿三篇06-09

      高中數學《什么是概率》說課稿范文01-27

      高中數學說課稿《正弦定理》范文01-23

      主站蜘蛛池模板: 一区二区三区在线视频在线观看 | 亚洲爆码一区二区三区| 修武县| 性色蜜臀av一区二区三区| 国产毛片三区二区一区| 唐海县| 治县。| 仁布县| 国产好片日本一区二区三区四区| 日本免费一区在线播放| 久久99精品久久久久久国产人妖| 99在线国产视频| 精品国产一区二区三区久久狼| 亚洲色欲色欲大片WWW无码| 顶级嫩模精品视频在线看| 中文无码制服丝袜人妻AV| 天堂岛国精品在线观看一区二区| 午夜国产丝袜美腿在线视频| 日韩av一区二区三区在线播放| 免费一级黄色大片久久久| 国产日韩一区二区精品| 亚洲伊人免费综合网站| 丰满熟妇人妻无码区| 武邑县| 论坛| AV无码专区亚洲AVL在线观看| 91精品啪在线看国产网站| 福安市| 国产欧美亚洲另类第一页| 精品理论一区二区三区| 兴城市| av大片在线无码永久免费网址| 韩国三级大全久久网站| 国产九色蝌蚪91av在线观看| 久久这里都是精品一区| 中文字幕无码免费久久| 最近亚洲精品中文字幕| 少妇高潮惨叫久久久久电影| 无码高潮少妇毛多水多水免费| 人妻丝袜中文字幕久久| 92精品国产自产在线观看48页|